Suppressor mutations in Escherichia coli methionyl-tRNA formyltransferase: Role of a 16-amino acid insertion module in initiator tRNA recognition (protein synthesis initiationyRNA–protein interactionsygenetic suppression)
نویسندگان
چکیده
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF; EC 2.1.2.9) is important for the initiation of protein synthesis in eubacteria and in eukaryotic organelles. The determinants for formylation in the tRNA are clustered mostly in the acceptor stem. As part of studies on the molecular mechanism of recognition of the initiator tRNA by MTF, we report here on the isolation and characterization of suppressor mutations in Escherichia coli MTF, which compensate for the formylation defect of a mutant initiator tRNA, lacking a critical determinant in the acceptor stem. We show that the suppressor mutant in MTF has a glycine-41 to arginine change within a 16-amino acid insertion found in MTF from many sources. A mutant with glycine-41 changed to lysine also acts as a suppressor, whereas mutants with changes to aspartic acid, glutamine, and leucine do not. The kinetic parameters of the purified wild-type and mutant Arg-41 and Lys-41 enzymes, determined by using the wild-type and mutant tRNAs as substrates, show that the Arg-41 and Lys-41 mutant enzymes compensate specifically for the strong negative effect of the acceptor stem mutation on formylation. These and other considerations suggest that the 16-amino acid insertion in MTF plays an important role in the specific recognition of the determinants for formylation in the acceptor stem of the
منابع مشابه
Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis.
Exploiting differences in tRNA recognition between prokaryotic and eukaryotic tyrosyl-tRNA synthetases (TyrRSs), we have isolated the gene for the cytoplasmic TyrRS of Saccharomyces cerevisiae by functional complementation in Escherichia coli of a mutant E. coli tRNA. The tRNA, derived from the E. coli initiator tRNA with changes to allow suppression of amber termination codons, is poorly amino...
متن کاملImport of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins.
A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl-tRNA s...
متن کاملCharacterization of two species of methionine transfer ribonucleic acid from bakers' yeast.
The biochemical properties of two species of methionine transfer ribonucleic acid from bakers’ yeast, separated by diethylaminoethyl Sephadex column chromatography, have been studied. Each species of the two methionine tRNAs, designated methionine tRNA I and methionine tRNA II, respectively, has been purified by benzoylated DEAEcellulose column chromatography. Methionine tRNA I can be esterifie...
متن کاملInitiation of protein synthesis in Saccharomyces cerevisiae mitochondria without formylation of the initiator tRNA.
Protein synthesis in eukaryotic organelles such as mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl tRNA (fMet-tRNA(fMet)) for initiation. Here we show that initiation of protein synthesis in yeast mitochondria can occur without formylation of the initiator methionyl-tRNA (Met-tRNA(fMet)). The formylation reaction is catalyzed by methionyl-tRNA formyl...
متن کاملMutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro.
We show that the absence of a Watson-Crick base pair at the end of the amino acid acceptor stem, which is a hallmark of all prokaryotic initiator tRNAs, is one of the key features that prevents them from acting as an elongator in protein synthesis. We generated mutants of Escherichia coli formylmethionine tRNA that have a base pair at the end of the acceptor stem. The mutants generated were C1-...
متن کامل